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Abstract: 
It is claimed hereby that, against a current view of logic as 
basic logical concept that can be used to define consequence itself. This requires some substantial 
changes in the underlying framework, including: a non
answers, instead of the usual truth
between any structured objects; a definition of oppositions in terms of basic negation. Objections 
to this claim will be reviewed
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1. Introduction 

The paper wants to do justice to the central contribution of opposition to the way meaning is 
currently formed and conveyed. For this purpose, let us 
“meaning” while turning to the very content of opposition, from Aristotle’s works to a general 
theory between logic, ontology, and algebra.

1.1. Opposition and Meaning

Meaning has to do with information, and information is n
related objects. Moreover, existence does not seem to be so a crucial property of an object once 
information has more to do with how people interact with each other. Theses precisions may help to 
bring some light upon the philosophical background of our logic of opposition, where the central 
concept of “truth” has to be treated very cautiously in an intersubjective sense of accepted 
information. 

That a formal semantics equally applies to different categories of things like indi
concept or sentences entails that our so
and algebra. However, it can be ca
questions and answers liable to present something as
sentences. To put it in other words, the following semantics depart
of truth by relating meaning to the way in which any piece of information is given about a putative 
object. The more objects there are in a given local ontology, the more questions are to be asked in 
order to make order between them. Borrowing from the Goodmanian parlance [6], there are several 

Volume 2:3

Logic in Opposition 

incaré, University of Lorraine, France 
Moscow State University, Moscow, Russia 

schang.fabien@voila.fr  

imed hereby that, against a current view of logic as a theory of consequence, opposition is a 
basic logical concept that can be used to define consequence itself. This requires some substantial 
changes in the underlying framework, including: a non-Fregean semantics of questions and 
answers, instead of the usual truth-conditional semantics; an extension of opposition as a relation 
between any structured objects; a definition of oppositions in terms of basic negation. Objections 
to this claim will be reviewed. 

. consequence, existential import, multifunction, negation, opposite, opposition

This paper results from a talk given during the 18th World Congress of Logic, Methodology 
ancy, July 19-26, 2011). I am grateful to Victor Gorbatov and Oksana 

Nevdobenko for helpful questions about its content. 

The paper wants to do justice to the central contribution of opposition to the way meaning is 
currently formed and conveyed. For this purpose, let us tell some words about the meaning of 
“meaning” while turning to the very content of opposition, from Aristotle’s works to a general 
theory between logic, ontology, and algebra. 

eaning 

Meaning has to do with information, and information is not a ready
related objects. Moreover, existence does not seem to be so a crucial property of an object once 
information has more to do with how people interact with each other. Theses precisions may help to 

osophical background of our logic of opposition, where the central 
concept of “truth” has to be treated very cautiously in an intersubjective sense of accepted 

That a formal semantics equally applies to different categories of things like indi
concept or sentences entails that our so-called “logic” of opposition lies between formal ontology 
and algebra. However, it can be called a theory of meaning safely insofar as it relies upon any 
questions and answers liable to present something as a relevant information beyond the sole case of 
sentences. To put it in other words, the following semantics departs from the realist
of truth by relating meaning to the way in which any piece of information is given about a putative 

The more objects there are in a given local ontology, the more questions are to be asked in 
order to make order between them. Borrowing from the Goodmanian parlance [6], there are several 

31 

Studia Humana 
2:3 (2013), pp. 31—45  

theory of consequence, opposition is a 
basic logical concept that can be used to define consequence itself. This requires some substantial 

semantics of questions and 
conditional semantics; an extension of opposition as a relation 

between any structured objects; a definition of oppositions in terms of basic negation. Objections 

. consequence, existential import, multifunction, negation, opposite, opposition 

This paper results from a talk given during the 18th World Congress of Logic, Methodology 
26, 2011). I am grateful to Victor Gorbatov and Oksana 

The paper wants to do justice to the central contribution of opposition to the way meaning is 
tell some words about the meaning of 

“meaning” while turning to the very content of opposition, from Aristotle’s works to a general 

ot a ready-made collection of 
related objects. Moreover, existence does not seem to be so a crucial property of an object once 
information has more to do with how people interact with each other. Theses precisions may help to 

osophical background of our logic of opposition, where the central 
concept of “truth” has to be treated very cautiously in an intersubjective sense of accepted 

That a formal semantics equally applies to different categories of things like individuals, 
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insofar as it relies upon any 
a relevant information beyond the sole case of 
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ways of making worlds and, correspondingly, one and the same object can have a different 
meaning-in-a-model (a local ontology) according to the number of properties it is provided with.
 That it exists is a thing; but another thing is that, according to us, existence is neither a 
necessary nor a sufficient condition to say anything meaningful about it. Therefore, one and the 
same object can belong to different worlds (or models) once different properties are assigned to it 
or, better, different perspectives are entertained to make a description of it. To push the line further, 
let us say that the so-called “actual” world is a maximal lexical field, i.e. a proper set of overlapping 
sets of information; each element of this common world can (and, indeed, does often) belong to 
different such subsets that are to be compared with “possible worlds”, i.e. different perspectives 
(lexical fields) from which they are entertained as valuable pieces of information. 

1.2. Plan of Work 

The theory of opposition is investigated and revisited in the present talk. This will be made 
in two main steps, defensive and constructive in turn. (1) Against a widespread opinion, it is argued 
that such a theory is not just an old-fashioned legacy of Aristotle’s traditional logic that would have 
definitely failed because of the problem of existential import. (2) Beyond the current view that logic 
is a theory of consequence, it is suggested that opposition is a more basic relation encompassing 
Tarski’s consequence as a particular case of opposition. (3) Objections to this counterintuitive view 
of opposition will be reviewed and lead to a more dialogical view of the logical discipline: the aim 
of logic is not so much preserving truth than expressing structured differences. 

Logic as a theory of difference will be defended as follows. 
(1) According to Aristotle’s logical legacy [1], there are four kinds of logical opposition 

between universal and particular propositions: contrariety, contradiction, subcontrariety, and 
subalternation. 

After defining these, attention will be paid first upon the so-called problem of existential 
import; the logical square of opposition is said to be invalidated once the predications are about 
empty terms, leading to a radical depreciation of the theory of opposition because of its allegedly 
limited application and dependence upon some preconceptions of traditional logic. Against this 
definite view, it is shown that existential import does not invalidate the logical square under some 
alternative formalization of the propositions [4]. 

(2) Then the concept of opposition is abstracted from its historical context and developed 
into a set-theoretical approach [14,15,16]. Firstly, opposition is given as a binary relation between 
structured objects. Secondly, a correlated theory of opposites depicts oppositions as a relation 
between a relatum and its opposite. Thirdly, a non-Fregean semantics leads to a Boolean calculus of 
opposites: Question-Answer Semantics (hereafter: QAS), where the logical value of any structured 
proposition is an ordered set of answers to corresponding questions. In the case of logical 
oppositions, the meaning of structured propositions is afforded by questions about their disjunctive 
normal form. A Boolean algebra of the classical oppositions follows from it and matches with 
Piaget’s INRC Group [12]. Fourthly, the crucial role of negation accounts for the oppositional roots 
of logical consequence, and its oppositional nature is justified by claiming that subalternation 
proceeds as a double mixed negation. 

(3) Finally, a number of objections will be addressed about this revisited theory of 
opposition. These can be summed up by the following questions: 
(a) Can opposition be something else than a relation of incompatibility? (c) Isn’t subalternation a 
restrictedly standard view of logical consequence? (d) Can one set up a proper calculus with the 
opposite-forming operators? 

A way to reply to this set of objections requires an alternative view of logic: not a theory of 
truth-preserving consequence, but a theory of difference-forming negation. A way to uphold this 
trend within QAS requires the epistemological primacy of negation upon truth. The variety of 



33 
 

logical negations must be distinguished from the unique operator of denial for every opposite 
relation between structured objects. 

2. The Historical Background of Opposition 

Two reasons may be advocated at the least to show that the theory of opposition is on a par 
with Aristotle’s logical works. For one thing, the famous “square of opposition” is currently 
assigned to the philosopher’s name, although it has been argued elsewhere (e.g. in [14]) why 
Aristotle never mentioned any such figure in his logical writings. On the other hand, each of the 
well-known relations of opposition finds its roots in Aristotle’s texts, too. This is not the whole 
story, however, in the sense that a properly logical theory of opposition can be displayed without 
resorting to traditional logic. In this respect, a formal device can be used to set up a Boolean algebra 
of opposition which doesn’t take into account any other information than logical values. 
Let us return to the historical background of logical oppositions, however, in order to see more 
clearly how an algebraic logic of oppositions can be freely abstracted from the Aristotelian theory 
of quantified propositions while embracing it altogether. 

2.1. Definitions 

Aristotelian oppositions are characterized by some constraints upon the truth-values of 
related propositions a and b. 
 
Proposition 1 
a and b are contrary to each other iff they cannot be true together. 
 
Proposition 2 
a and b are contradictory to each other iff they cannot be true together and cannot be false together. 
 
Proposition 3 
a and b are subcontrary to each other iff they cannot be false together. 
 
Proposition 4 
b is subaltern to a iff b cannot be false whenever a is true. 
 

A number of questions arise from this preliminary presentation, including the three 
following ones. First: why does one deal with logical oppositions in the form of a square, i.e. why 
should one stick to four logical relations among its six edges (four straight lines and two 
diagonals)? Next: does it make sense to talk about subcontrariety and subalternation within a theory 
of opposition? Aristotle depicted the former in terms of “verbal oppositions” (see e.g. [3], p. 416) 
while ignoring the latter as an opposition altogether, after all. Last, but not least: what of non-
classical negations with respect to the theory of oppositions? While Aristotle clearly linked 
opposition and negation through the so-called laws of non-contradiction (a proposition and its 
negation cannot be true together) and excluded middle (a proposition and its negation cannot be 
false together), contradiction is the only kind of opposition that relates to negation from this 
classical (bivalent) perspective. 
Another focus is in order before answering these questions in the sequel, namely, one of the logical 
problems that led to the historical fall of the theory of opposition.  

2.2. Existential Import 
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According to the so-called problem of existential import, the logical square of opposition is 
made invalid by a standard, truth-functional semantics once propositions refer to empty names, i.e. 
dummy individuals that don’t exist (like “the present king of France”, “griffins”, and the like). If so, 
then its applicability is restricted to non-empty models and thereby weakens the scientific relevance 
of a logical theory of opposition. Such a semantic difficulty has to do with the way truth-values are 
assigned to propositions, since a predication like “S is P” assumes for its truth that S be instantiated 
by at least one individual (x, say).  

A modern formal translation of Aristotle’s traditional logic turns predications into quantified 
propositions like “(…x)(S(x) … P(x))”, where the blanks are to be filled by quantifiers (either 
universal or existential) and logical connectives (either conditional or conjunction). Except for the 
ambiguous case of singular propositions, the result is a clear correspondence between traditional 
and modern formulas. 
 
Proposition 5 

Formulas from traditional logic can be translated in modern first-order logic as follows.    
(A) Universal affirmative: “Every S is P” := (∀x)(Sx ⊃ Px); (E) Universal negative: “Every S is not 
P” := (∀x)(Sx ⊃ ∼Px); (I) Particular affirmative: “Some S is P” := (∃x)(Sx ∧ Px); (O) Particular 
negative: “Some S is not P” := (∃x)(Sx ∧ ∼Px). 

 
Let us consider the sentence “Some griffins are nice”. The truth-value of this particular 

affirmative relies upon whether there is some griffin which happens to be nice. But there cannot be 
some such creature, for no griffin exists at all. Hence the first conjunct Sx is made false, and so is 
the entire conjunctive proposition. Let us write by v(I) = F the case that the I-proposition is false. 
This entails that its contradictory, i.e. the corresponding universal affirmative, is true, according to 
the definition of contradictories just given above: v(E) = T. This sounds intuitively right, since no 
griffin could be nice once no such creature exists. But the tricky point is about its subaltern, i.e. the 
related particular negative to the effect that some griffin is not nice. Such a proposition cannot be 
true whenever no griffin exists, so that v(O) = F. The whole set of logical oppositions is thus at odds 
with their aforementioned definitions, as witnessed by the following invalid square and its 
troublesome relation (in bold face). 
 
                                      v(A) ==== F                       v(E) = F 
 
 
 
 
 
                                       v(I) = T                        v(O) ==== T 
 

A number of replies have been proposed to settle this problem, namely: restricting the 
existential import of propositions; discarding their formal modern interpretation; invalidating the 
square as it stands, otherwise. Our own solution would consist in changing the formalization of 
particulars, as argued in a recent paper (see [4]); in a nutshell, our point is that the contradictories of 
universals should not be rendered in the form of existential propositions whose truth-conditions 
require the existence of their subject-term. Whatever the explanatory value of this formal reply may 
be, it helps to save the square and enhances its scientific value within the realm of logic. 

Once the square of quantified propositions is restored, we can push the line further by 
abstracting from the category of sentences Aristotle was strictly concerned with. Logical values are 
the essential information required to define logical oppositions, indeed, and any sort of meaningful 
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object is included in our discussion. But to do so actually requires another formal semantics than the 
truth-conditional one. 

3. A formal theory of opposition 

The subsequent formal semantics makes a primary distinction between oppositions and 
opposites, before defining their features by means of Boolean bitstrings. Just as Tarski suggested an 
abstract view of consequence as either a relation between sets of formulas or an operator [20,21], 
the same treatment will be reserved to the logical concept of opposition. 

3.1. Opposition as a relation 

It is taken to be granted that opposition proceeds as a relation between objects, irrespective 
of how many and what these are exactly. Although the mainstream theory of opposition usually 
refers to the binary relation between propositions (as e.g. in [14]), it will be argued in the following 
that our proposed semantics needn’t apply to propositions and equally applies to individuals, 
concepts, or whatever does make sense by means of a question-answer game. 
 
Proposition 6 

An opposition Op is an ordered binary relation between any meaningful objects a and b: 
Op(a,b), such that it holds iff the 2-tuple of objects a,b satisfies Op. 

 
It is worthwhile to note that Op has been restricted hereby to the arity n = 2, although more 

than two contrary oppositions can be related to each other satisfactorily. It is thus the case that e.g. 
necessary, impossible and contingent propositions are contrary to each other. Yet this is not the case 
for most of the other relations like, e.g., contradictories: if a is contradictory with b and b is 
contradictory with c, then a is not contradictory but, rather, identical to c. For take “white” as an 
instance of a; then its contradictory b is “not-white”, and the contradictory c of the latter is “not-not-
white”, i.e. “white”, while the contrary of “white” is “black”. We will return to these peculiarities 
later on (see section 3.3). 

For the time being, let us note not only that any n-tuple of a valid relation of opposition can be 
reduced to a set of 2-tuples (see [13] for a similar rationale with classical 3-ary connectives); but 
also, that these relations can be constructed through intermediary operations within a more fine-
grained formal semantics. 

3.2. Opposite as an operation 

Taking the preceding example again, the concepts “white” and “black” stand into a contrary 
relation. We propose in the following to investigate the logical properties of “blacken”, that is, the 
operation by means of which anything white is turned into something black. 
 
Proposition 7 

An opposite O is a mapping O(a) upon a relatum a of an opposition, such that it turns it into 
the second relatum b of the given opposition: Op(a,O(a)) = Op(a,b). 

 
A logic of colours has already been set up by Jaspers (see [8]) in the same vein, where 

chromatic oppositions are displayed by a set of Boolean bitstrings that is going to be explained in 
the following semantics. 
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3.3. An algebraic semantics for oppositions and opposites 

Our formal semantics has a twofold purpose: to afford a formal theory of meaning for any 
sort of objects from mere individuals to usual sentences; to set up this semantics with the help of 
Boolean algebra. While it is a locus classicus to say that only sentences make properly sense by 
their truth-conditions, the following leads to a more comprehensive “non-Fregean” semantics that 
characterizes the sense by means of questions and answers.  

3.3.1. Question-Answer Semantics 

A special attention is paid to the way in which information is conveyed about an individual, 
concept, or sentence; indeed, how they are depicted by some of their properties may have a deep 
influence on their general meaning. This leads to a question-dependent view of meaning, where the 
value of any given information relies upon the sorts of properties put into focus. 

Our Question-Answer Semantics (hereafter: QAS) resorts to a non-Fregean theory of sense 
and reference, assuming that no reference is a truth-value. By doing so, QAS is on a par with 
Roman Suszko’s critics of the so-called “Fregean Axiom” in [19].  
 
Proposition 8 

The meaning of any object a is determined by its sense and its reference, sense being a finite 
ordered set Q(a) = 〈q1(a),...,qn(a)〉 of n questions about a (where n ≥ 1) and reference being the set 
A(a) = 〈a1(a),...,an(a)〉 of corresponding answers. 

The standard, truth-conditional semantics can be embedded as a special case of our 
question-answer framework, by using the words “true” and “false” as the metalinguistic predicates 
of specific questions among other ones. By contrast, our non-standard semantics results in a 
calculus of logical values while going beyond the prominent case of “truth-values”. 

3.3.2. Boolean algebra of oppositions 

Given that m sorts of answers can be given to n questions, there are mn possible values for 
each a. For instance, asking n = 3 questions about a and having m = 2 available answers yields a set 
of mn = 23 = 8 logical values including A(a) = 111, 110, … until 000. The number of such logical 
values is relative to the formal ontology within which a is presented; that is, it depends upon how 
many data are needed in order to be able to individuate a, i.e. to make it logically different from any 
other object in a given set. In a nutshell, n is a sufficient amount of questions iff A(a) ≠ A(b), 
assuming that these questions can characterize anything meaningful by a finite set of properties (i.e. 
the semantic predicates of a question). The perplexing cases of vague predicates and ensuing 
paradoxes should lead to a Boolean counterpart of infinite-valued matrices; but they won’t be 
considered in the present paper.  

It is worthwhile to note that the objects are not provided with a single value like “true” or 
“false” in QAS; rather, their reference amounts to an ordered combination of single sub-values that 
stand for each of the answers. We stick to the Boolean values 1 and 0 in the sequel, where m = 1 is a 
yes-answer and m = 0 a no-answer, while pointing out that a question-answer game needn’t be 
confined into such binary answers. Let us call by a bitstring any such structured string of ordered 
answers; in the case of a Boolean algebra, each sub-value of a string takes either 1 or 0 and is 
thereby reminiscent of logical bivalence. At the same time, the mn possible values of an object go 
largely beyond two cases whenever m > 1 and result in something analogous with a many-valued 
calculus of Boolean bistrings. 
A calculus of logical oppositions is made possible by making use of bitwise operations.  
 
 



 

Proposition 9 
∩ and ∪ are the operations of meet
x∩y = max(x,y);  
x∪y = min(x,y).  
 

The Aristotelian relations can be rendered algebraically by asking questions about the 
compossibility of truth-values between any tw
(bivalent) proposition a can be translated by a disjunctive normal form 
〈a1(a),a2(a),a3(a),a4(a)〉, to characterize such a propositional opposition between 
a questioning about their various compossibilities among 
and b can be true together; whether 
true; whether a and b can be false together. 
More generally, oppositions go b
defined in common terms of compossible yes
irrespective of the sorts of questions to be asked about them.
 
Proposition 10 
Opposition Op(a,b) is a set Op = 
 
10.1 by the logical values A(a) and 
the same question-answer game, these stand into a relation of: 
contrariety CT(a,b)  iff  
contradiction CD(a,b)  iff  
subcontrariety SCT(a,b) iff  
subalternation SB(a,b) iff  
 
10.2. by the Booleans operations  of meet and join, together with the logical va
(only yes-anwers) and antilogy 
contrariety CT(a,b)  iff  
contradiction CD(a,b)  iff  
subcontrariety SCT(a,b) iff  
subalternation SB(a,b) iff  
 

Two notes are in order, in connection with the above definitions of opposition. 
On the one hand, a minimal number
and subcontrariety between any objects 
 
Proof. Let i < 3, e.g. i = 2 or i = 1. Suppose that 
A(b) = 01, then Op(a,b) = CD(a,
whenever i = 2, and, a fortiori, with 
  

The case where i = 1 corresponds to the usual truth
proposition is given a unique value 1 (f
rightly claimed in [10] that no other operator than a contradiction
On the other hand, the above definitions betray a real difference between 
symbols: SB) and the other relations: not only does the former not hold when 
interchanged, since SB is not a 
characterize opposition are not sufficient to identify SB. Indeed, the lat
question about a and b can be answered positively or negatively together; but an additional 

meet and join upon values 1 and 0, such that 1 > 0. Then: 

The Aristotelian relations can be rendered algebraically by asking questions about the 
values between any two propositions a and b. Assuming that every classical 

can be translated by a disjunctive normal form 
, to characterize such a propositional opposition between 

heir various compossibilities among n = 4 possible cases, namely: whether 
can be true together; whether a can be true while b is false; whether a can be false while 

can be false together.  
More generally, oppositions go beyond the sole logical category of propositions and are to be 
defined in common terms of compossible yes- or no-answers for their arbitrary objects 
irrespective of the sorts of questions to be asked about them. 

 {CT,CD,SCT,SB} of relations to be defined: 

) and A(b) of any two objects a and b such that, for any 
answer game, these stand into a relation of:  

 ∀ai: ai(a) = 1 ⇒ ai(b) = 0  
 ∀ai: ai(a) = 1 ⇔ ai(b) = 0 
 ∀ai: ai(a) = 0 ⇒ ai(b) = 1 
 ∀ai: ai(a) = 1 ⇒ ai(b) = 1 

by the Booleans operations  of meet and join, together with the logical va
 (only no-answers):   

 A(a) ∩ A(b) =  and A(a) ∪ A(b) ≠  
 A(a) ∩ A(b) =  and A(a) ∪ A(b) =  
 A(a) ∩ A(b) ≠  and A(a) ∪ A(b) =  
 A(a) ∩ A(b) = A(a) and A(a) ∪ A(b) = A

Two notes are in order, in connection with the above definitions of opposition. 
number of questions is required to preserve the relations of contrariet

and subcontrariety between any objects a, b. 

1. Suppose that A(a) = 10. If A(b) = 00, then Op(
,b); if A(b) = 11, then Op(a,b) = SB(a,b). No other relation occurs 

, with i < 2.                                                                                       

1 corresponds to the usual truth-functional semantics where each 
proposition is given a unique value 1 (for True) and 0 (for False), and this is the reason why McCall 

no other operator than a contradiction-forming one can be devised in it.
On the other hand, the above definitions betray a real difference between 
symbols: SB) and the other relations: not only does the former not hold when 
interchanged, since SB is not a symmetrical relation; but also, the n = 4 questions used to 
characterize opposition are not sufficient to identify SB. Indeed, the latter holds once every given 

can be answered positively or negatively together; but an additional 
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upon values 1 and 0, such that 1 > 0. Then:  

The Aristotelian relations can be rendered algebraically by asking questions about the 
. Assuming that every classical 

can be translated by a disjunctive normal form A(a) = 
, to characterize such a propositional opposition between a and b amounts to 

4 possible cases, namely: whether a 
can be false while b is 

eyond the sole logical category of propositions and are to be 
answers for their arbitrary objects a,b, 

{CT,CD,SCT,SB} of relations to be defined:  

such that, for any i th question of 

by the Booleans operations  of meet and join, together with the logical values of tautology  

 
 
 
A(b) 

Two notes are in order, in connection with the above definitions of opposition.  
of questions is required to preserve the relations of contrariety 

00, then Op(b,a) = SB(b,a); if 
). No other relation occurs 

                                                            �    

functional semantics where each 
or True) and 0 (for False), and this is the reason why McCall 

forming one can be devised in it. 
On the other hand, the above definitions betray a real difference between subalternation (in 
symbols: SB) and the other relations: not only does the former not hold when a and b are 

= 4 questions used to 
ter holds once every given 

can be answered positively or negatively together; but an additional 



 

condition must be added to it, to the effect that a given q
about b once answered positively about 
relation of non-contradiction or 
subcase. 
 
Proposition 11 
Op(a,b) is a relation of independence
IND(a,b) iff A(a) ∩ A(b
 

It may be replied that SB is not a relation of opposition at all, in the light of the preceding 
difficulty. For example, Demey & Smessaert argued in [5] that the Aristotelian square is a complex 
gathering of two different sorts of relation from two separate question
opposition Op(a,b), and implication Imp(
of consequence Cn, we argue that subalternation can be embedded into the unique question
game defining logical oppositions (see section 4.2). By doing so, consequence is made a particular 
case of opposition in the sense that its very definition calls for the relation Op. More precisely, 
subalternation is formed by a kind of 
meaning as a synchronic set of different objects, let us see how negation takes in our algebraic logic 
of opposition. 

3.3.3. Opposites as negations

As an alternative to the systematic treatment through sequent calculi
paved the way to a general theory of negation by proposing in [12] a so
reversibility and its corresponding INRC Group of group
for his genetic epistemology, Piaget claime
structured elements with the help of a number
A brief look at the former definitions of oppositions (see Definition 10) shows how reversibility is 
on a par with our main concern. 

To begin with, Piaget’s INRC Group is a set of 4 operations N,R,C, 
one I. Albeit restricted to the special case of binary propositions of classical logic, this whole device 
can be rendered within QAS as follows.
 
Proposition 12 

Let A(a) = 〈a1(a),...,an(a)
switching operation of denial that applies to single values 
Group can be defined by operations 
 
Identity I   (not switching, not permuting)
Inversion N  (switching, not permuting)
Reciprocity  (not switching, permuting)
Correlation  (switching, permuting)
 
Each of these operations can be obtained through a combination of other ones. Thus
 
Proposition 13 
INRC Group includes the following rules of iteration:
Identity  II = NN = RR 
Commutation  For every X,Y 
Idempotence  For every X 

condition must be added to it, to the effect that a given question cannot be answered negatively 
once answered positively about a. By omitting this further constraint, the result is a mere 

contradiction or independence (see [2]) with respect to which sub

independence IND iff:  
b) ≠  and A(a) ∪ A(b) ≠  

It may be replied that SB is not a relation of opposition at all, in the light of the preceding 
difficulty. For example, Demey & Smessaert argued in [5] that the Aristotelian square is a complex 

rts of relation from two separate question-answer games, namely: 
), and implication Imp(a,b). While Imp can be equated with the Tarskian relation 

of consequence Cn, we argue that subalternation can be embedded into the unique question
game defining logical oppositions (see section 4.2). By doing so, consequence is made a particular 
case of opposition in the sense that its very definition calls for the relation Op. More precisely, 
subalternation is formed by a kind of double negation. In accordance with our structuralist view of 
meaning as a synchronic set of different objects, let us see how negation takes in our algebraic logic 

Opposites as negations 

As an alternative to the systematic treatment through sequent calculi
paved the way to a general theory of negation by proposing in [12] a so

and its corresponding INRC Group of group-theoretical operations. In order to account 
for his genetic epistemology, Piaget claimed that intelligent reasoning consists in transforming 
structured elements with the help of a number of basic operations such as switch and permutation. 
A brief look at the former definitions of oppositions (see Definition 10) shows how reversibility is 

To begin with, Piaget’s INRC Group is a set of 4 operations N,R,C, 
one I. Albeit restricted to the special case of binary propositions of classical logic, this whole device 

follows. 

)〉 be an arbitrary object individuated by n questions, and let § be a 
switching operation of denial that applies to single values ai(a) such that §(1) 
Group can be defined by operations of switching and permuting upon every single value of 

(not switching, not permuting)  I(a) = 〈(a1(a),...,an

(switching, not permuting)  N(a) = 〈§(a1(a)),...,§(
(not switching, permuting)  R(a) = 〈(an(a)),...,(a
(switching, permuting)  C(a) = 〈§(an(a)),...,§(

Each of these operations can be obtained through a combination of other ones. Thus

INRC Group includes the following rules of iteration: 
RR = CC = I 

For every X,Y ∈ {I,N,R,C}, XY = YX 
For every X ∈ {I,N,R,C}, IX = X 
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To begin with, Piaget’s INRC Group is a set of 4 operations N,R,C, together with a trivial 
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) such that §(1) = 0. Then the INRC 

of switching and permuting upon every single value of A(a): 

n(a)〉 
)),...,§(an(a))〉 

a1(a))〉 
)),...,§(a1(a))〉 

Each of these operations can be obtained through a combination of other ones. Thus 



 

Complementarity NR = C, NC 
 

While stressing the link between reversibility and the opposite
note the difference between the operations of 
values, whereas the latter applies to whole structured values. Denial is a sort of 
helps to form logical negations, just as Humberstone suggested in [7
negation such that §§a = ∼a. 

Moreover, N exactly matches with a contradiction
reverting any single value and thereby satisfies the definition of contradiction (see Definition 10). 
Nevertheless, there is no such one
Piaget’s INRC Group and the four opposite
special case N(a) = cd(a), which opposite is constructed by R and C depends upon which logical 
value these reversibility operators are applied to. Taking 
ct(a) and C(a) = 1110 = sb(a); while taking 
1100 = I(a).  

More interestingly, negation can be characterized in two ways through our
operators and, thus, in terms of opposition. First, more than three non
ones can be devised to create opposite terms O(
denial to some single values of a
global and local negations (see [15,16]). Second, such usual non
paracomplete (intuitionist) and paraconsistent
of opposition. Starting from a result by Béziau [3], it has been shown that a logical hexagon of 
modal oppositions includes three sorts of logical negations, namely: classical negation is the 
contradiction-forming operator, whereas paracomplete and paraconsiste
the contrary- and subcontrary-forming operators, respectively. More generally, a distinction is thus 
made between extensional and intensional negations. 
 
Proposition 14 
For any object a:  
The contradiction-forming operator cd is
one b resulting from cd(a) = b. 
The contrary- and subcontrary-forming operators ct and sct are 
such that there are more than one
 
Proof. By Proposition 10.  
A logical negation is paracomplete
a logical negation O such that LEM: 
algebraic counterpart of the statemen
then ai(a) = ai(O(a)) = 0 for some single value 
when ct(a) = b. Hence LEM fails if O 
A logical negation is paraconsistent
negation O such that, for any b, 
LE. The failure of LE is to be proved by a counterexample such that 
O(a)), i.e. A(a ∧ O(a)) ≠ . By definition of SCT, 
fails if O = sct. 
                                                                                                                                          
 

To sum up, the debate launched by Slater about the meaning of logical negation in [18] led 
to the construction of opposite-forming operators, doing justice to the occurrence of non
negations within the theory of opposition. Such a rationale had been foreshadowed 
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forming operator cd is an extensional operator of negation such that there is only 

forming operators ct and sct are intensional 
one b resulting from ct(a) = b.  

paracomplete iff the Law of Excluded Middle (LEM) fails with it, i.e. there is 
a logical negation O such that LEM: a ∨ O(a) is not tautological. Let A(a
algebraic counterpart of the statement that LEM is not tautological in QAS. If 

0 for some single value ai(a) of A(a). By definition of CT, 
. Hence LEM fails if O = ct.  

paraconsistent iff the Law of Explosion (LE) fails, i.e. there is a logical 
, a ∧ O(a) does not entail b. Let SB(a ∧ O(a
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. By definition of SCT, A(a) ∩ A(b) ≠ when sct(
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INRC Group, while noting again that the latter are to be clearly distinguished from the class op of 
opposite-forming operators (i.e. there is no one-one correspondence between the pairs {R,C} and 
{ct,sb}, respectively). 

4. Objections (and its replies) 

A number of objections can be raised against our whole enterprise, from the structuralist-
minded view of meaning to the translation of standard logics into QAS. Let us see a sample of 
these, while attempting to give sufficient replies.  

4.1. Opposition is nothing but incompatibility 

Aristotle claimed himself that subcontrariety is an opposition “only verbally”, in contrast to 
the genuine instances of contrariety and contradiction. This suggests that an Aristotelian opposition 
between any two sentences a and b is synonymous with incompatibility, in the sense that both 
cannot be true at once. If so, then our logical theory of opposition should be renamed as a theory of 
non-identity or, better, a theory of difference that accounts for the logical connections between 
different objects within a structured set of objects (possible worlds, or lexical fields).  

A look at the Platonic process of “diaeresis” should argue for our case, however. Indeed, the 
dialectic process of definition can be seen as a diachronic question-answer game where different 
objects are more and more individuated by increasing the number of questions characterizing them. 
Moreover, it has been seen that the operator of denial § applies to a single Boolean value by 
switching it from 1 to 0 (and conversely), just as the contradiction-forming operator cd applies to 
ordered values. 

In a nutshell, our algebraic view of logical values as structured bitstrings helps to explain 
why opposition produces the meaning of different objects without implying their mutual 
incompatibility. This also means that contradiction is the primary opposition underlying any other 
one, including the “verbal” case of subcontrariety and even subalternation. 

4.2. Consequence is not subalternation 

That a man is bald entails that it is not haired, in accordance to the contrary relation between 
“bald” and “haired”. Indeed, “not haired” is the contradictory of “haired” and, given that any 
contradictory of a contrary is a subaltern, the contradictory of the contrary of “bald”, “not haired”, 
stands for its subaltern.  
 
                                       haired                        bald 
 
 
 
 
 

                             not bald                        not haired 
 
In semi-formal words: ct(haired) = bald, and cd(bald) = not bald; hence cd(ct(haired)) = sb(haired) 
= not bald. This calculus is another evidence for the fact that Piaget’s reversibility operators differ 
from our opposite-forming operators, by passing, insofar as the latter are not commutative.  
 
Proposition 15 
Let ~ the symbol for classical negation, ¬ for paracomplete negation, and – for paraconsistent 
negation. Then:  
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15.1 ∼(a) := cd(a); ¬(a) := ct(a); –(a) := sct(a) 
15.2 subalternation results from the double mixed negation ∼¬(a) := cd(ct(a)) 
15.3 the members of op are not commutative operators: for any x,y ∈ {ct,cd,sct,sb}, x(y(a)) ≠ y(x(a)) 
(where x ≠ y) 

A proof of 15.3 can be given thanks to the intensional behavior of the so-called non-classical 
negations, where there is a one-many mapping from the input value to the resulting opposite outputs 
(between brackets in the sequel).  
 
Proof. By induction upon the members of the class op of opposing-forming operators. 
Let A(a) = 1000. Then: 
ct(a) = {0000,0100,0010,0001,0110,0011,0101} 
cd(ct(a)) = {1111,1011,1101,1110,1001,1100,1010} 
cd(a) = 0111 
ct(cd(a)) = ∅ 
Therefore cd(ct(a)) ≠ ct(cd(a)). 
(The reader is pleased to go through the entire inductive proof.)                                                   �
  
The sole exception is the case where the iterated operator is the extensional case of contradiction, 
reproducing the classical law of double negation in QAS: cd(cd(a)) := ~~(a) = a. It is obviously not 
so with non-classical negations, especially with the paracomplete operator that famously violates 
the aforementioned inference rule: ct(ct(a)) ≠ a. 

It could be replied to all of this that subalternation is nothing but a very restrictive 
counterpart of logical consequence. Whatever the case may be about the crucial properties of 
consequence, it is taken to be granted that our Boolean treatment is on a par with the semantic view 
of logical consequence as truth-preservation. Besides, the former helps to abstract from the notion 
of truth by claiming that any yes-answer to premises must lead to the same answers in the 
conclusion. In other words, any object occurs as a consequence whenever it confirms anything 
accepted about its premises. For this very reason, consequence, entailment, and subalternation are 
equated with each other from our point of view. Although there might be alternative views of 
consequence, let us argue that our QAS should be able to account for such non-standard versions by 
changing the central clauses of its question-answer game. 

4.3. There is no calculus for opposite-forming functions 

It has been noted in the preceding section that most of the opposite-forming operators 
proceed as one-many mappings, that is, operators with one input value and several output values. 
Mathematically speaking, this is a sufficient reason to establish that op is not a proper function: only 
one-one or many-one mappings are entitled to be called by this name, whereas one-many mappings 
do not. This is not a sufficient reason to conclude that no calculus can be devised for a theory of 
opposition and its constructive operators, however. Following the calculus of iterated negations by 
Kaneiwa [9], and by analogy with the arithmetic operation of square root, it clearly appears that √4 
has a definite number of output values, i.e. √4 = {-2,2}. In the same line, a definite number of 
values b1,…,bn can be assigned to any opposite of a such that op(a) = {b1,…,bn}. This calculus 
leads to a set op of multifunctions (or many-valued functions), instead of usual functions. 
     Admittedly, the resulting calculus is complicated by a more complex range of possible values. 
For instance, how many contraries of an increasing width of bitstrings there can be should be an 
increasing set of outputs … or the null set, in case the input value couldn’t be said to have contraries 
at all. To clarify this complex situation, let us return to the structured values and their set-theoretical 
properties.  
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Proposition 16 
Let Card be the symbol of cardinality. Then for any value of a, Card(cd(a)) = 1. 
 
Proof. By Proposition 14, every logical object cannot have but one contradictory. Hence the 
cardinality of cd(a) is 1.  
 
Proposition 17 
Let m, n and y(a) be the number of answers, questions, and yes-answers in the logical value of a, 
respectively. Then for any a, Card(ct(a)) = mn-y(a) - 1. 
 
Proof. By truncating the yes-answers A(a). 
According to the definition of contrariety in Proposition 10, any yes-answer to a i th question about a 
entails a corresponding no-answer for its contrary b. That is, ai(b) = §(1) = 0 whenever ai(a) = 1. By 
truncating every valuation where ai(a) = 1, there remains a subset of n-y(a) cases with only no-
answers for a, i.e. an/i(a) = 0. Then an/i(b) = 1 or 0, which yields a maximal number of possible 
valuations while excluding the special case with only an/i(a) = 1 (a and b would be contradictories, 
otherwise). As there are mn possible valuations for m sorts of answers and n questions, the non-
truncated bitstring of n-y(a) elements results in a set of mn-y(a) possible valuations minus the 
aforementioned excluded case with only yes-answers. Hence Card(ct(a)) = mn-y(a) - 1.                    � 
 
Example: let A(a) = 0100, with m = 2, n = 4, and y(a) = 1. Hence: 
a2(a) = 1, therefore a2(ct(a)) = §(1) = 0; by truncating the latter case, there remains a set of n-y(a) = 
3 cases where an/2(a) = 1 or 0. That is:  
 
   a1(a)  a2(a)  a3(a)  a4(a) 
 
A(a)   0  1  0  0   
 
A(ct(a))   0  0  0  0  (1) 
   1  0  0  0  (2) 
   0  0  1  0  (3) 
   0  0  0  1  (4) 
   1  0  1  0  (5) 
   1  0  0  1  (6) 
   0  0  1  1  (7) 
  
   1  0  1  1  (= cd(a)) 
 
Card(ct(a)) = mn-y(a) - 1 = 24-1 - 1 = 23 - 1 = 8 - 1 = 7, namely:  
ct(a) = {0000,1000,0010,0001,1010,1001,0011} 
Note: A(a) = 0100 and A(b) = 0000 stand into a relation of contrariety and subalternation at once, 
since we have both CT(a,b) = CT(b,a) and SB(b,a). This is allowed by the definitions of CT and 
SB, however (see Proposition 10), merely excluding the case where a and b cannot be false at once 
(by CT).   
 
Proposition 18 
Let m, n and y(a) be the number of answers, questions, and yes-answers in the logical value of a, 
respectively. Then for any a, Card(sct(a)) = my(a) - 1. 
 
Proof. By truncating the no-answers in A(a). 
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According to the definition of subcontrariety in Proposition 10, any no-answer to a i th question 
about a entails a corresponding yes-answer for its subcontrary b. That is, ai(b) = §(0) = 1 whenever 
ai(a) = 0. By truncating every valuation where ai(a) = 0, it remains a subset of y(a) cases with only 
yes-answers for a, i.e. an/i(a) = 1. Then an/i(b) = 1 or 0, which yields a maximal number of possible 
valuations while excluding the special case with only an/i(a) = 0 (a and b would be contradictories, 
otherwise). As there are mn possible valuations for m sorts of answers and n questions, the non-
truncated bitstring of y(a) elements results in a set of my(a) possible valuations minus the 
aforementioned excluded case. Hence Card(sct(a)) = my(a) - 1.                                                          � 
 
Example: let A(a) = 1011, with m = 2, n = 4, and y(a) = 3. Hence: 
a2(a) = 0, therefore a2(sct(a)) = §(0) = 1; by truncating the latter case, there remains a set of n-y(a) = 
3 cases where an/2(a) = 1 or 0. That is:  
 
   a1(a)  a2(a)  a3(a)  a4(a) 
 
A(a)   1  0  1  1 
 
A(sct(a))   1  1  1  1  (1) 
   0  1  1  1  (2) 
   1  1  0  1  (3) 
   1  1  1  0  (4) 
   0  1  0  1  (5) 
   0  1  1  0  (6) 
   1  1  0  0  (7) 
 
   0  0  1  0  (= cd(a)) 
 
Card(sct(a)) = my(a) - 1 = 23 - 1 = 8 - 1 = 7, namely:  
sct(a) = {1111,0111,1101,1110,0101,0110,1100} 

Note: A(a) = 1101 and A(b) = 1111 stand into a relation of subcontrariety and subalternation 
at once, since we have both SCT(a,b) = SCT(b,a) and SB(a,b). This is allowed by the definitions of 
SCT and SB (see Proposition 10), merely excluding the case where a and b cannot be true at once 
(by definition of SCT). 

The above computations nicely match with the definition Aristotle gave to subcontraries as 
“contradictories of contraries” (see e.g. [3]). This plural expression should be clearly distinguished 
from the singular characterization of a subaltern as the “contradictory of a contrary”. 
 
Proposition 19 
For any objects a,b: 
19.1 a and b are subcontrary to each other iff their contradictories are contrary to each other, so 
that:  
SCT(a,b) = CT(cd(a),cd(b))  
 
Proof. According to Proposition 10, contradiction proceeds by switching every answer ai(a) such 
that ai(cd(a)) = §(ai(a)). According to Proposition 17 and Proposition 18, the non-truncated subsets 
of contraries and subcontraries are respectively such that an/i(a) = 0 and an/i(a) = 1, i.e. an/i(a) = 
§(an/i(a)). Now these are contradictory to each other. Therefore, SCT(a,b) = CT(cd(a),cd(b)).     � 
 
19.2 b is a subaltern of a iff b is the contradictory of a contrary of a, so that: 
Card(sb(a)) = Card(ct(a))   
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Proof. By Proposition 15.2, sb(a) = cd(ct(a)). There is only one contradictory of any opposite term 
op(a) of a, by Proposition 16: Card(cd(op(a))) = Card(op(a)), hence Card(sb(a)) = Card(ct(a)). 
 
An alternative proof of the later result can be obtained through the definition of subalternation by 
Proposition 10: each yes-answer being preserved in the subaltern sb(a), truncate every yes-answer 
of a while excluding the case where an/i(sb(a)) = 1 (a and sb(a) would be identical, otherwise). Thus 
compute the non-truncated bitstring of no-answers as mn-y(a) - 1. 
 
Example: let A(a) = 0100, with m = 2, n = 4, and y(a) = 3. Hence: 
a2(a) = 1, therefore a2(sb(a)) = 1; by truncating the latter case, there remains a set of n-y(a) = 3 
cases where an/2(a) = 1 or 0. That is:  
 
   a1(a)  a2(a)  a3(a)  a4(a) 
 
A(a)   0  1  0  0 
 
A(sb(a))   1  1  0  0  (1) 
   0  1  1  0  (2) 
   0  1  0  1  (3) 
   1  1  1  0  (4) 
   1  1  0  1  (5) 
   0  1  1  1  (6) 
   1  1  1  1  (7) 
 
   0  1  0  0  (= a) 
 
Card(sb(a)) = my(a) - 1 = 23 - 1 = 8 - 1 = 7, namely:  
sct(a) = {1100,0110,0101,1110,1101,0111,1111} 

5. Conclusion 

The gist of the present paper relied upon an algebraic analysis of opposition, in the name of 
a structural view of meaning. Not everything has been said about it, admittedly: although logical 
consequence is depicted as a by-product of the larger relation of opposition, no counterpart of 
Tarski’s systematic work about consequence is available until now with respect to opposition.  

This should lead to a twofold investigation in later works. Firstly, a general theory of 
iterated oppositions for n iterations, to generalize the above section 4.3 and its multifunctional 
calculus of opposites: what can be the contrary of the subcontrary of the subaltern of some object a, 
for instance? Secondly, the construction of an abstract operator of opposition in line with Tarski’s 
operator of consequence (see especially [21]): can there be such an operator to be characterized 
either in logic, or algebra, or topology? 

Whether what has been displayed in the paper belongs to the area of algebra or logic of 
opposition is questionable. For one thing, our formal theory of opposition crucially relies upon 
Boolean bitstrings, and this has much more to do with algebra than logic. At the same time, such a 
distinction between logic and algebra assumes that the former be considered as a pair 〈L,Cn〉 
including a formal language (set of formulas) L and a basic operator of consequence Cn upon 
elements of L. A next step towards a more comprehensive approach of logic would consist in 
embedding logical consequence within a broader pair 〈L,Op〉, accordingly: just as consequence has 
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been investigated in the form of either a relation or an operator [20,21], opposition could be viewed 
from the perspective of a general relation Op or a general opposite-forming operator op. 

Finally, our treatment of meaning through Boolean translations of information amounts to a 
finitist version of possible-world semantics, i.e. an algebraic semantics where models are finite sets 
of sets of objects. Meaning as a set of lexical fields is thus treated by a finite set of overlapping 
question-answer games about definite objects. If so, then whoever aspiring to a general model 
theory should blame QAS for limiting the use of logic to finitely many models. Two replies could 
be given in turn: if finite question-answer games lead to finitely many-valued sets of objects, then 
their infinite counterparts might lead to infinitely many-valued objects (by analogy to the infinitely 
many-valued matrices); eventually, our constructive treatment of meaning as a questioning process 
is played by bona fide speakers who don’t practice with infinite set of data. For who plays with 
infinity, if not God (if any)? 
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