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Introduction  

Elastic modulus (also called tensile modulus or Young modulus) E belongs 
to the most important material constants. It determines the relation between 
stress σ along the axis, and strain ε at axial loading, in the form of  

εσ E= , 

which is valid in the range of Hooke’s law. Higher loading of the sample 
may result in exceeding the limits of elastic behaviour of the material. 

There are several possibilities how to measure this quantity. The best know 
methods are as follows: mechanical (static and dynamic), acoustic, ultrasonic, 
resonant, optical, etc. Mechanical methods are the most suitable for measuring 
elastic modulus E of thin samples, such as rods, wires, columns, fibres, etc. Ap-
plication of the static methods (e.g. direct prolongation, two- and three- point 
bending etc.) however, is rather disadvantageous, as they can hardly reach accu-
racy better than 10% [Brown 1969].  

Higher accuracy can be reached by means of dynamic methods. Elastic 
modulus E can be determined with several percent accuracy by means of vibrat-
ing samples at two- or three-point bending [Tomoshenko, Young, Weawer 
1974], or by balance of so called Searl´s pendulum [Agrawal, Jaim, Sharma 
2008]. This paper presents a new dynamic method – the method of reverse pen-
dulums connected by a measured wire sample. Modulus of the wire elasticity 
can be calculated after measuring constrained parameters of the vibrating sys-
tem. 

Measuring equipment 

A diagram of used equipment is shown in Fig. 1. Both reverse pendulums 
were hung so that they vibrated in a common plane. When using a classical 
spring connection for demonstration of composition of parallel oscillations, we 
can determine the spring’s stiffness, too. 

In our experiment an elastic wire shaped like a horizontal circle was used as 
a connection. Deviation of the pendulums in their common plane gave rise to 
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bending vibrations of the wire, while the same phenomenon as in the case of 
spring connection (i.e. energy transfer from one pendulum to another, formation 
of impacts, etc.) could be observed. 

 

 

Fig. 1. Measuring equipment scheme 
(1 – pendulums, 2 – wire sample connecting pendulums) 

Young modulus of the wire elasticity can be determined similarly as the 
spring stiffness can be specified. Corresponding basic circular frequencies ω1 

and ω2 necessary for calculation can be determined in two ways: either by means 
of impacts (detailed description will be noted later) or by experiments shown in 
Fig. 2a and 2b examining concordant and/or discordant oscillations of the pen-
dulums. 

  
a) b) 

Fig. 2. Vibrational modes of coupled pendulums  
a) 1st mode – concordant vibrations, b) 2nd – discordant vibrations 
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Dynamic Analysis 

When determining elastic modulus E from our resultss, it is necessary to 
specify the range of the wire circular are deformation caused by the force F 
(Fig. 3a). 

(G is weight of pendulum, u is a wire deformation; L0 is distance of the pen-
dulum centre from the rotation axis, φ is angle of the pendulum deviation and l is 
distance of the wire connection from the pendulum point). 

To do so we used strain energy A the quantity of which is given by bending 
effects in particular. Regarding perpendicular axes symmetry, the calculation 
was done only for a quadrant (Fig. 4). 

Strain energy A of the quadrant is as follows: 
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and E is elastic modulus, Jz is area moment of inertia about wire neutral axis, 
M(ψ) is bending moment, R is arc radius and ψ represents the angle of turning of 
the arc. The values of T and N correspond to tangential and normal component 
of the force F. 

 

 
a) b) 

Fig. 3. Deformation diagram at transfer of force F: a) to the circular wire,  
b) to the pendulum 
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Fig. 4. The analysis of internal forces during deformation of circular wire  
 
Before calculations it is necessary to determine the value of bending mo-

ment M0, which corresponds to zero rotation at the point ψ = 0, i.e. 
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The value of displacement u1 at the point ψ = 0 can be determined from the 
following condition:                                                                                       
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Total displacement u is the given by the equation: 
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Elastic modulus can be determined also from frequencies ω1 and ω2 of the 
connected pendulums. If the interaction between connecting circle element and 
pendulums is replaced by its force effect then moment M applied on the pendu-
lum (Fig. 3b) can be determined as  

FlmgLM += ϕsin0 ,   (7) 

where m is pendulum weight and g is gravity acceleration. 

Supposing that the pendulums are oscillating in the field of small oscilla-
tions (φ < 5°), sin φ ≅ φ and u = 2lφ. Thus, using expressions (6) and (7) we can 
obtain a new relation: 



 183

ϕϕ
)8π(

π8
23

2

0 −
+=

R

EJl
mgLM z .  (8) 

Setting this relation into motion equation of the pendulum we can calculate 
circular frequency for discordant oscillations of the connected pendulums: 










−
+=

)8π(
π81

23

2

0
2
2 R

EJl
mgL

I
zω ,   (9) 

where 2
0mLI =  is the pendulum inertia moment. A similar relation applies 

for circular frequency of concordant vibrations of two pendulums: 

I

mgL02
1 =ω .    (10) 

Having treated the relations (9), (10) and using vibration periods 

11 π2 ω=T , 22 π2 ω=T  and well-known relation for area moment of inertia: 

64

π 4d
Jz = ,   (11) 

where d is wire diameter, we can obtain final relation for calculating elastic 
modulus of wire in the form of: 
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Results of measurements 

The measurements were carried out by means of connected pendulums as 
shown in diagram (Fig. 2). We have investigated the elastic properties of three 
materials – steel, aluminium and copper, all with the same geometric parameters 
(length and diameter). The values of elastic modulus E have been calculated 
from the formula (12), with common geometrical parameters used for all the 
samples (Table 1). 

 
Table 1 

Geometrical parameters of wire sample 

L0 [m] m [kg] d [mm] R [m] l [m] 

0.84 0.87 1.4 0.16 0.25 

Also the period of concordant vibrations was the same for all materials  
– T1 = 1.040 s. 
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So, the only varying parameter had been the period of discordant vibrations 
T2. The corresponding results for period of discordant vibrations are summarized 
in Table 2.  

 
Table 2 

Quantities measured for the determination of elastic modulus 

Sample T2 [s] E [GPa] Etab [GPa] 

Steel 0.665 203.3 200–210 

Aluminium 0.852 69.9 67–70 

Copper 0.758 124.1 110–120 

 
As we can see the obtained results are in good agreement with material-table 

values (last column); the differences represent no more as 5%.  

Conclusion 
The described equipment is simple and illustrative, completing the range of 

pendulum-based methods for the measurements of elasticity constants. Regard-
ing 5% accuracy it ranges to the most accurate methods. It does non-require 
intricate measuring equipment and works without destruction, practically. Even 
extremely thin samples can be measured without a risk of damage or permanent 
deformation. The activity of pendulums is stable, the system phases do not „tune 
out” or dump even after several hundreds of oscillations. The method can be 
successfully used as a demonstration specimen in a university textbook (chapter 
„Vibrating Movements” or „Solids Physics”), or a task for laboratory exercises.  

 
The article was created within framework of the projects KEGA No. 001STU-4/2014 

„Implementation of non-destructive methods for investigation of physical properties of 
progressive thin-layer methods” (Slovak Republic) and VEGA No. 1/0356/13 „Study of 
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Abstract 
Classical reverse pendulums are currently used for measuring the gravity 

acceleration g, or – when pendulums bodies are connected by the spring – for 
demonstration of composition of parallel vibrations. In this paper we present the 
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reversed pendulums in „non-traditional” position – as a device for measuring of 
elastic modulus of wire samples. The connection is realized by the measured 
wire sample with the circle shape.  
 
Keywords: elastic modulus, connected reverse pendulums, thin wire samples. 

 


